Apple 2 Computer Information ¢ Document 045

g g4
S Apple 2 Computer Technical Information S

Apple Il Computer
Family Information

/47//&50;/ BAs/C Tu 35 -
4,0//@ S# _Z%rne/ g‘#‘fc’fd’e,

/L/eé%ﬁng/“ — Call APPLE— \7?% /782

Document # 45

Ex Libris David T. Craig

“DTCA2DOC-045-00.PICT” 141 KB 2001-03-29 dpi: 300h x 300v pix: 2037h x 2790v
| Source: David T Craig Page 0001 of 0006 |

Apple 2 Computer Information ¢ Document 045

FROM THE VERY CORE OF APPLE:

Applesoft Internal

Structure

By C.K. Mesztenyi/Washington Apple Pi

INTRODUCTION

HIS article attempts to
describe the overall structure
of Applesoft in the ROM space
$D000-F7FF; it may be con-

sidered as a preceding chapter to
“Applesoft Internals,” hereinafter
referred to as “Crossley”, and gives
descriptions of many subroutines and
zero page usage. Crossley and other
abbreviated references, known herein
by Lingwood, Mestztenyi and Golding,
may be found at the conclusion of this
article.

Before going into details, I must
define certain terms for the sake of this
article which may be very confusing in
the Applesoft Manual. These terms
are the “statement,” “‘command,” “in-
struction,”” “‘line number’" and “‘line.”
The first three of these are used
somewhat interchangeably in the
Manual. It refers to REM and Assign-
ment or LET statements in Chapter 1,
lists them as Commands together with
ABS in Appendix O, and assumes
them to be instructions in Chapter 2
and Appendix N. I do not intend to
clear all these confusions and errors in
the syntactic definition and subse-
quently used terminology. instead, the
following syntactic definitions will be
used here with the hope that I will not
confuse the issue further. These defini-
tions are as follows:

statement := end-st / for-
st/ / .../ new-st

let-st 1= assign-st /
LET assign-st

compound-statement: = statement
[CR] statement :
:= linenumber
compound-
statement

labeled-statement

Call —A.PP.LE. January 1982

For example, 1 define a
“statement’’ as any of the 64 state-
ments with the keyword ‘“‘end,”
“for,”... as listed in the keyword col-
umn of thc Statement Type Entry
Table; the syntactic rules of these in-
dividual statements are given in the
Manual under their descriptions. The

. compound-statement is a list of [sim-

[TR1

ple] statements separated by a ",
while the labeled-statement is a line

~ number followed by the compound-

statement which the Manual defined
as “line.” [CR] stands for carriage

_return.

With these definitions, one can
state that a compound-statement is a
program in immediate mode, while a
labeled-statement is a program part in
deferred mode.

1. DATA STRUCTURE

The data areas used by Applesoft
reside:

1. Flags and temporaries on Zero
page.

2. Five Tables in memory
$D000-D364.

3. Scattered (locally used) data
interspersed in the program

area $D365-F7FF.

4. Zero page load data in
memory $F10B-F126.

5. Stored program normaily from
memory address $0801.

6. Variable areas.
1.1 Zero Page

The zero page use is described in
(Applesoft, Basic Programming
Reference Manual pp.140-141). Fur-
ther information may be found in
[Crossley], [Mesztenyi], and
[Lingwood].

“DTCA2DOC-045-01.PICT” 282 KB 2001-03-29 dpi: 300h x 300V pix: 2172h x 3045v

1.2 Tables

The five tables residing in
$D000-D364 are as follows:

$D000-DO7F = Statement Type
Entry Table.
$D080-D0OB1 = Function Entry
Table.
$DOB2- DOCF=Operator Tag and
Entry Table.

$D0D0- D25F=Keyword Token
Table.

$D260-D364 = ASCII Messages.

%“ ;ES C',, %
o7
p,',# 2.7
e es

“IECE? $ ¢
Apple Software ¢ All Programs On Disk
APPLEPANIC...........! $2995 now$23.96
WARP DESTROYER 2995 now 23.96
DARK FOREST 2995 now 23.96
REDALERT 29.95 now 23.96
CYBORG................. 3295 now 26.36
THRESHOLD............. 3995 now 31.96
BEERRUN 3495 now 27.96
CROSSFIRE 2995 now 23.96
HADRON................. 3495 now 27.96
STARTHIEF.............. 2995 now 23.96
TIMEZONE............... 99.95 now 79.96
HIRES ADVENTURE #4 .. 34.95 now 27.96
WIZARDRY............... 4995 now 39.96
SPACE QUARKS 29.95 now 23.96
BUGATTACK............ 2995 now 23.96
TRACK ATTACK 29.95 now 2396
TASC COMPILER 175.00 now 139.96

[SPECIAL]
ARCADEMACHINE 4495 now 33.16

C.O.D. * MoneyOrders ® Certified Checks
For Personal Check Allow Two Weeks
N.Y.S. Res. Add 7.25% Sales Tax ® All Orders
Under $100 Add $2.00 Postage and Handling

 SEND FOR FREE PRICE LIST #675 *

BYTES & PIECES
Box 525 Dept. CJ E.Setauket, N.Y. 11733

(516) 751-2535

9

| Source: David T Craig

Page 0002 of 0006 |

Apple 2 Computer Information ¢ Document 045

APPLESOFT INTERNAL STRUCTURE

The Statement Type Entry Table
1s used to recognize statements and to
obtain the proper entry points in the
program area. It consists of 64 two
byte entries containing the entry point
low-high addresses minus one. The
order of the 64 entries correspond to

the tokens, 128 to 191, assigned to the
keywords END to NEW, as given in
(Applesoft, Basic Programming
Reference Manual, p.121). Table 1
summarizes these data, giving the ac-
tual entry point addresses.

TABLE 1

Statement Type Entry Table From $D00-D07F

He » Key Entry Hex Key Entry
Token Vord Point Token Word Point
$80 END $D870 $AD COLOR= $F24F
$81 FOR 5D7644 SAL POP $D% 68
§82 NEXT SDCF?9 $A2 VTAB $F254
$83 DATA $D99S $A3 HIMEM: $SF286
$84 INPUT $DBB2 $A4 LOMEM: SF2A6
5835 DEL $F331 $ A3 ONERR $F2CB
$8 6 DIM $DFDY $A& RESUME $F318
$87 READ $DBE2 $A?7 RECALL SF3BC
$88 GR SF390 $AB STORE $F39F
$89 TEXT $F399% $A9 SPEED= $F242
$8A PR SF1ES $AA LET $DA46
$8B IN# $F1DE $AB GOTO $D93E
$8C CALL SF1DS $AC RUN $D912
$8D PLOT $F225 $AD IF $D9CY
$8E HL IN $F232 $AE RESTORE $D849
S8F VLIN $F241 $AF & $03FS
90 HGR2Z $F3D8 $BO GOUB $D921
$91 HGR $SF3E2 $B1 RETURN $D9é48B
$92 HCOLOR= S$F4EY $B2 REM $D9DC
$93 HPLOT $F&FE $B3 STOP $DBE
594 DRAV $F749 $B4 ON $D9EC
$93 XDRAV $F 74F $BS WAIT $E784
$9 6 HTAB SF7E7 $Bé LOAD $DacCy
597 HOME $SFCS8 $B? SAVE $D8R0
$98 ROT= $F?721 $B8 DEF $E313
§99 SCALE= $F727 $BY POKE SE778B
$9A SHLOAD $F7735 $BA PRINT $DADS
$9B TRACE $F24D $BB CONT $D8 94
$9C NOTRACE $F26F $BC LIST $D&AS
$9D NORMAL $F273 $BD CLEAR $D&6A
$9E INVERSE $F277 SBE GET $DBAD
$9F FLASH $F280 $BF NEW $D6 49
TABLE 2 3

Function Entry Table From $D080-D081

He x Xey Entry Hex Key Entry
Token Word Point Token Word Point
$D2 SGN $EB90O $DF SIN SEFF1
5D3 INT $EC23 SEOQ TAN SFO3A
$D4 ABS $EBAF $E1 ATN $FOYE
$D3 USR $000A $E2 PEEK SE764
$Dé FRE SE2DE $E3 LEN $E4DS
$D7 SCRN($D412 $E4 STRS $E3CS
$D8 PDL $DFCD $ES VAL $E707
$DY POS SE2FF SEé ASC $SEGES
$DA SGR SEESD SE? CHRS$ SE646
$DB RND SEFAE SES8 LEFTS SE&5A
$DC LOG $SE941 SE9 RIGHTS $E48¢
$DD EXP $EF09 SEA MIDS$ SE691
$DE cos SEFEA

10

The Function Entry Table is used
during expression evaluation to obtain
entry points to the function
subroutines in the program area. It
consists of 25 two byte entries with
low-high addresses. The order of the
entries corresponds to the tokens 210
to 234 assigned to the keywords SGN
to MIDS$ as given in (Applesoft, Basic
Programming Reference Manual,
p.121). Table 2 gives the summary.
The description of the function
subroutines with their entry points are
given in [Crossley].

The Operator Tag and Entry Table
is used during expression evaluation. It
consists of 10 three-byte entries corre-
sponding to the tokens 200 to 209
assigned to the keywords + to x as
given in (Applesoft, Basic Programm-
ing Reference Manual, p.121.) Of
these three bytes, the first byte con-
tains the Tag which also serves as a
precedence number. The next two
bytes contain the low-high addresses
minus one of the entry points in the
program area. Table 3 shows the Tag
values and actual entry point
addresses.

TABLE 3
Operator TAG and Entry Table
From $D0B2-DOCF

Hexn Key Hex Entry
Token Word Tag Point
$C8 + $79 $E7CH
sCY ~ $79 SE7AN
SCA * $7B SE982
5CB 1 $78 SEASY
$CC A §7D $SEE97
$CD AND $50 $DFS5
$CE OR $44 $DF4F
$CFP) $7F $EEDO
$DO = $7F $DE98
$D1 ¢ $64 $DF 63

“DTCA2DOC-045-02.PICT” 285 KB 2001-03-29 dpi: 300h x 300V pix: 2179h x 3033v

The Keyword Token Table is used
by the Tokenizer routine which
replaces keywords by appropriate
tokens. It consists of the 107 keywords
(from END to MID$) concatenated
such that each byte is an ASCII
character with high bit set to zero,
unless the character is the last one of a
keyword, in which case it is set to 1.
e.g. it contains

ENDFORNEXT..

where the bold character indicates that
the high bit is one.

Call —AP.P.LE. January 1982

| Source: David T Craig

Page 0003 of 0006 |

Apple 2 Computer Information ¢ Document 045

The ASCII Message Table con-
tains ASCII characters where the in-
dividual message (e.g. the error
message part “SYNTAX ERROR")is
separated either by having the high bit
set to its last character byte, or fol-
lowed by a zero byte.

1.3 Scattered Data

Scattered data may occur in many
places; some of them are the floating
point constants, (see: [Crossley] and
|[Lingwood]), short table for high
resolution graphics, (see: [Mesztenyi)).

1.4 Zero Page Load Data

The memory area $F10B-F126 is
the CHRGET/CHRGOT routine
followed by an initial random number
which gets loaded into the Zero page
$B1-CC during initialization.

1.5 Stored Program Area

Zero page location $67-68 contain
the address (low-high) of the beginning
of the stored program, usually $0801.
From this address, the memory con-
tains the tokenized label-statements
ordered by their line numbers. The for-
mat of a tokenized label-statement is as
follows:

2-byte pointer (low-high address)
to the next tokenized
statement

2-byte binary value (low-high) of
the line number bytes of
the tokenized compound-
statement

n bytes of the actual tokenized
compound statement

1-byte containing zero

The last tokenized labeled-
statement is followed by two extra
bytes containing zero. Thus the stored
program has a chain of pointers start-
ing with the contents of $67-68, and
ending with a zero value. Each pointer
indicates the beginning of a labeled-
statement, while a byte containing zero
indicates its end; three zero bytes in-
dicate the end of the stored program.

1.6 Variable Areas

These areas and corresponding
pointers are adequately described in
(Applesoft, Basic Programming Refer-
ence Manual), with further explana-
tions in [Golding].

Call —A.P.P.LE. January 1982

2. CHRGET/CHRGOT
SUBROUTINE.

The most important subroutine in
Applesoft is the CHRGET/CHRGOT
subroutine residing on the Zero page
$B1-C8 with the TXTPTR imbedded
at $B8-$BY. It has been described in
[Crossley], but is repeated here
because of its importance.

The CHRGOT entry ($B7) loads
the register A with the contents of the
memory whose address is in the
TXTPTR ($B8-B9, low-high).
CHRGET entry (B1) does the same
except it increments the TXTPTR
prior to loading. If the obtained byte is
equal to the ASCII space ($20) then the
control goes back to CHRGET, i.e.
spaces (blanks) are skipped. Otherwise
the flag Z is set if A=$3A or $00, i.e.
ASCII colon (:) or null; flag Cis set if A
is not an ASCII number 0 to 9, i.e.
A<$30 or A>$39; finally the control
goes back to the calling routine.

The importance of this routine
comes into light if one compares it to an
instruction fetch cycle in a computer
with the TXTPTR as a counter
register. The instruction code is
returned in register A, flags Z and C,
ready to be executed (interpreted). The
ASCII space code behaves like a no-op,
and is automatically skipped. This
feature is realized in the implementa-
tion of GOSUB-and RETURN-state-
ments by placing the TXTPTR value
together with line-number and tag $B0
on the stack in the GOSUB-statement,
resetting them in the RETURN-
statement.

Unfortunately, the CALL-state-
ment has been implemented differ-
ently by not saving the above data in
the stack. It would have been simple to
implement in the same way as the
GOSUB-statement, and the RETURN
-statement could have served as a
return address from the machine
language subroutine. This would have
allowed a call of the Applesoft routine
at $D43C with a CALL-statement from
a stored program with request for in-
put of a compound-statement ending
with RETURN ready to be executed in
immediate mode, where the RETURN
causes the return to the stored
program.

“DTCA2DOC-045-03.PICT” 302 KB 2001-03-29 dpi: 300h x 300V pix: 2149h x 2909v

3. PROGRAM STRUCTURE

The overall program structure of
Applesoft can be illustrated by the
following semantic program:

3.1. Initialization

3.2. Request and receive input
from the keyboard.

3.3. Tokenize the input

3.4. If the first character of the in-
put is an ASCII number then
store the input as part of the
stored program, and GOTO
3.2

3.5. If the first character of the in-
put is not an ASCII number
then execute the input as a
program, after which GOTO
3.2.

3.1 Initialization

The Initialization (starting at
$F128) sets up the Zero page and
various other pointers.

3.2 Input

The input request starts at $D43C.
It uses the subroutine at $D52E to
display the prompt symbol and
through the Monitor GETLN, to
receive the input line into the input
buffer at $0200. It sets the high bits of
the input data to zero, places a zero
byte after the last input character, and
initializes the TXTPTR to the input
buffer address minus one.

3.3 Tokenization

The Tokenization Subroutine
($D559-D619, with entry at $D559)
replaces the keywords with the appro-
priate tokens in the input buffer. It also
removes blanks with the result still in
the input buffer. It places two extra
zero bytes at the end of the line. No
syntax checking is performed by this
routine.

Following Tokenization, the first
character in the input buffer decides
whether 3.4 or 3.5 is to be executed.

1

| Source: David T Craig

Page 0004 of 0006 |

Apple 2 Computer Information ¢ Document 045

APPLESOFT INTERNAL STRUCTURE

3.4 Stored Program

If the first character in the input
buffer is an ASCII number, then
Applesoft assumes it to be the first
character of a line-number of a labeled-
statement and either inserts it or
replaces an old labeled-statement with
the same line-number in the stored pro-
gram with the help of the routine start-
ing at $D46A.

3.5 Execution

If the first character of the input is
not an ASCII number, then Applesoft
assumes the input to be a compound-
statement ready to be executed. It sets
the TXTPTR to the beginning of the
input buffer and enters into an execu-
tion loop at $D805. At this stage,
TXTPTR really behaves like a pro-
gram counter. The execution of a
statement advances or changes
TXTPTR, e.g. to the stored program.
Finally, the control returns to 3.2, re-
questing new input under the following
condition:

() Execution of an end- or stop-
statement)

(i) Encountering 3 consecutive zero
bytes

(iii) Detecting syntax error without an
onerr-statement.

Individual statements are recog-
nized by their first, possibly tokenized,
byte. If this is between $80 and $BF
then it is assumed to be a token, and
the statement is executed by jumping
to the appropriate entry point listed in
Table 1. Otherwise it is assumed to be
a let-statement without the word LET.
These statement execution routines
are called subroutines, but not all of
them return.

The execution loop in $D805-D848,
and its preceding section in $D7D2-
D894, is fairly complex. It is listed
below with appropriate remarks.

CONCLUSION

With the knowledge of the Data
Structure, one may trace the internal
workings of Applesoft based on the
five point (3.1 to 3.5) Program Struc-
ture, and on the 64 statement inter-

SOFTWARE AUTHORS!

for Apple, Atari, TRS-80, NEC, Hitachi. . . .

Brgdderbund Software is looking for new authors to join its

international team of programmers. If you have a product for
the micro market, let us show you the advantages of working
production and distribution

- “with our team of design,
- specialists. "~/ yyneamer

Call or write for our free Authors Kit today or send us a
py of your work for prompt review undgr«

machine readable co
strictest confidence.

Wt
derbund Softor

.. #2 Vista Wood Way, San Rafael, CA 94901 (415) 456-6424

Nt

“DTCA2DOC-045-04.PICT” 318 KB 2001-03-29 dpi: 300h x 300V pix: 2197h x 3015v

preter subroutines with the given entry

points. There are two difficult parts

which need further documentation:

1. The expression evaluation routine,
called by FRMEVL in [Crossley],
which is used by many statement
routines. I think that part of the
complication is because Applesoft
had been implemented before its
syntactic rules were (correctly?)
established.

2. The other difficulty lies in the multi-
ple use of the stack. Beside the
statement subroutines (GOSUB-,
RETURN-,CALL-, FOR- and
NEXT-statement), FRMEVL uses
it, and also the internal program in
Applesoft (JSR, RTS instructions).

References:

[1] Applesoft, Basic Programming Reference
Manual.

[2}[5] are all available in ““Call-A.P.P.L.E. in
Depth No.1.” Apple Pugetsound Program
Library Exchange. 1981.

[2] John Crossley: Applesoft Internals.

|3] C.K. Mesztenyi: Notes on Hi-Res
Graphics Routines.

[4] David A. Lingwood: Amplifying Apple-
soft.

[5} Val J. Golding: Applesoft from Bottom to

op.

|6] William F. Luebbert: What's Where in

the Apple. Micro Ink, Inc., Chelmsford,
MA.

A.P.P.L.E.
Presents the
1981 Special*

Al 1981 issues of Call —A.PP.L.E.,
three-hole punched with a
sturdy outer cover, plus AN-
THOLOGY DISKETTES 5 & 6

— All Call —A.P.P.L.E. programs
published in 1981 —

Regular $43.5, 3
MEMBER SPECIAL $ 7050

A.P.P.L.E. Orders
304 Main Ave. S., Suite 300
Renton, WA 98055
(206) 271-4514
*Available 2/1/81, must be postmarked
or phone-ordered by 2/28/82.

Washington residents add 6.4% sales tax.

Call —A.P.P.LE. January 1982

David T Craig

Page 0005 of 0006 |

Apple 2 Computer Information ¢ Document 045

NEWSTT

N1

EXECUTE

L1

STTRET

PREND
STYPE

ASGST
COLON

Addresses:

Statement Handler Routine $D7D2-$D804

TSX ;Save

STX §$F8 ;Stackpointer

JSR 6$D858 ;Checks for Ctrl C

LDA $Bc ;Get

LDY $B9 ; TXTPTR

LDX §7¢ ;Check if immediate mode

INX ;(SFF in current line nbr)
BEQ NI

STA $79 ;No, thus put TXTPTR into

STY $7A ;0ld TXTPTR

LDY #500 ;iCheck byty at TXTPTR

LDA ($BB),Y

BENE COLON ;1f non-ze o> then it should be ':'
LDY #s02 ;1f zero t~en end of compound-st.
LDA ($B8),Y ;Check for end of program

CcLC ;Zero pointer 2 bytes further
BEQ PREND

INY ; It is a new labeled-statement
LDA ($B8),Y ;Get and store new

STA 475 ;Current lire nbr

INY

LDA ($B8),Y

STA §74

TYA ;Update TXTPTR

ADC $BS

STA $B8

BCC EXECUTE

INC $BY

BIT S$F2 ;Check for the trace bit

BPL Lt ;Notrace if positive

LDX $76 ;Trace is on, check

INX ;For mode

BEQ L1 ;No print in immediate mode
LDA #%23 ;Print out line nbr

JSR $DBSC +As trace information

LD §73%

LDA $76

JSR $ED24

JSR $DBS?

JSR CHRGET ;Get first byte of statement
JSR STYPE ;Use JSR to get return address in

;stack for
JMP NEWSTT ;{~-statement execution subroutine
;Teturns here

BEQ $D88A ;End of progranm

BEQ D857 ;Statement type check on its first byte
SBC #4580

BCC ASGST ;¢$$80 then assign-statement
CMP #5540

BCS $D84¢ ;Y$BF then error

ASL ;O0therwise get

TAY ;Entry point

LDA $D001,Y ;From the 2-byte

PHA ;Statement-type table

LDA $DOQOD,Y ;And put it into stack

PHA ;As return address of CHRGET
JMP CHRGET ;And go to there

JMP $DA4¢ ;Go to LET-st. routine

CMP #$3A ;Check for colon

BEQ EXECUTE ;Yes, go to execute

JMP SDECY ;Otherwise error

NEWSST $D7D2 N1 $D?7ES
EXECUTE $DBOS L1 $D8 1D
STTRET $D823 PREND $D824
STTYPE sD828 ASGST $D83F

COLON $D842

Call —A.P.P.LE. January 1982

13

“DTCA2DOC-045-05.PICT” 149 KB 2001-03-29 dpi: 300h x 300V pix: 2172h x 2902v

| Source: David T Craig

Page 0006 of 0006 |

